DIDACTIC UNIT:
TANGENCIES AND LINKS

3rd Compulsory Secondary Education
Teacher: Maria Jose Relaño Cotta
a.1. Draw a pair of outer tangent circumferences, which radius are $r_{1}=2.5 \mathrm{~cm}$ And $r_{2}=2 \mathrm{~cm}$.

1. Trace $O_{1}\left(r_{1}=2.5 \mathrm{~cm}\right)$; trace a radius r_{1}
2. Name the tangency point T.
3. Prolong the 2 centimetre radius to mark the second centre.
4. Go over the two circunferences.
a.2. Draw a pair of inner tangent circumferences, which radius are $r_{1}=2 \prime 5 \mathrm{~cm}$ And $r_{2}=2 \mathrm{~cm}$.

5. Trace $O_{1}\left(r_{1}=2.5 \mathrm{~cm}\right)$; trace a radius r_{1}
6. Name the tangency point T.
7. Measure the 2 centimetre radius from point T on radius OT to mark the second centre.
8. Go over the two circunferences.
b. Trace two tangent straight lines (t y t^{\prime}) to the circumference O_{1}

9. Trace $O_{1}\left(r_{1}=4 \mathrm{~cm}\right)$; trace a rad ius r_{1} (anyo ne).
10. Name the point T (tangency poin t).
11. By point T, trace the tangent straight line (\perp to radius $\mathrm{O}_{1} \mathrm{~T}$). Go over the straight line t .
12. Trace a second rad ius r^{\prime} : trace the tangent straight line t^{\prime} by $\mathrm{T}^{\prime} \quad \perp$ radio $\mathrm{O}_{\mathrm{T}} \mathrm{T}^{\prime}$. Go over t^{\prime}.

Tangency exercises \mid Sheet 2

a. Draw the circunference O_{1} tangent to the straight line t by poin $t \mathbf{T}$ which contains the point \mathbf{P}.

1. Draw the straight line t, mark the point T, anyone which belongs to t, and the point P, anyone outer to line t.
2. Trace the straight line $\mathbf{r} \perp$ to line \mathbf{t} by point \mathbf{T}.
3. Join points \mathbf{T} and \mathbf{P}.
4. Trace the perpendicular bisector of segment TP ; it cuts the line \mathbf{r} by the centre O1
5. Draw the solution circumference, with centre $=\mathrm{O}_{1}$ and radius $=\mathrm{O}_{1} \mathrm{~T}$
b. Draw the tangent arc to two perpendicular straight line, which rad ius is 4 centimetre.

6. Trace two straight lines; a horiaontal one H and a vertical one v .
7. Trace a parallel one to h at a 4 centimetre distance.
8. Trace a parallel one to v at a 4 centimetre distance.
9. The intersection point bet ween both parallels is the centre O
10. Determine the tangency points.
11. Trace the circumference arc TT^{\prime}, which centre $=\mathrm{O}_{1}$ and radius $=\mathrm{O}_{1} \mathrm{~T}$.

Tangency exercises 1 Sheet 3

a. Place the circumference O (radius $=2^{\prime} 5 \mathrm{~cm}$) and the horizontal straight line h ,

Trace the circumference O_{1} (radius $=3 \mathrm{~cm}$)

4. Trace parallel straight line to h at a 3 centimetre distance.
5. Name $\quad \mathrm{O}_{1}$ (intersection point between the arc and line h^{\prime})
6. Determine T and T^{\prime} : trace O_{1}; go over the solution circumference.
b. Place the circumference O (radiius $r=3 \mathrm{~cm}$), point P, outer to the circumference, and point T, inner to the circumference, draw the circumference $\mathrm{O}_{1} \mathrm{t}$ angent to O by T which contains to P.

1. Trace the circumference O (radius $=3 \mathrm{~cm}$); T is any inner point of the circumference.
2. Mark the point P (anyone outer to the circumference)
3. Trace the radius OT ; prolong it.
4. Trace the perpendicular bisector of the segment TP.
5. The perpendicular bisector cuts to radius OT in the centre O_{1}
6. Trace the circumference O_{1}; go over it.

Tangency exercises 1 Sheet 4

a. Place $\mathrm{O}_{1}\left(\mathrm{r}_{1}=3 \mathrm{~cm}\right)$ and $\mathrm{O}_{2}\left(\mathrm{r}_{2}=4^{\prime} 5 \mathrm{~cm}\right) ;$ draw $\mathrm{O}_{3}\left(\mathrm{r}_{3}=2^{\prime} 5 \mathrm{~cm}\right)$

Tangent to O_{1} And O_{2}

b. Place two straight lines h and r which cut each other with a 60 degree angle; draw circumferences
O_{1} y O_{2} Tangent to both straight lines.

1. Trace an horizontal line (h)
2. Trace the inclined line r (forming a 60° angle with h)

3. Mark the centre O_{1} : any point inner to bisector line.
4. Mark O , any point of the bisector line. Determine T_{2} y T_{2},
5. Determine the tangency points.
6. Trace O_{2} with centre $=\mathrm{O}_{2}$ y radius $=\mathrm{O}_{2} \mathrm{~T}$
