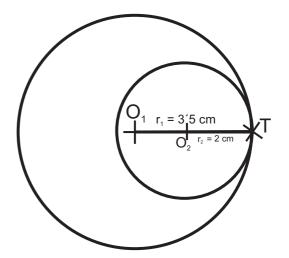
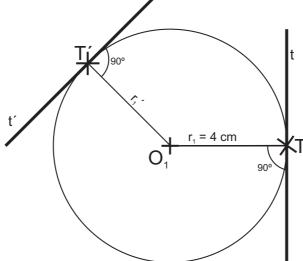

DIDACTIC UNIT:

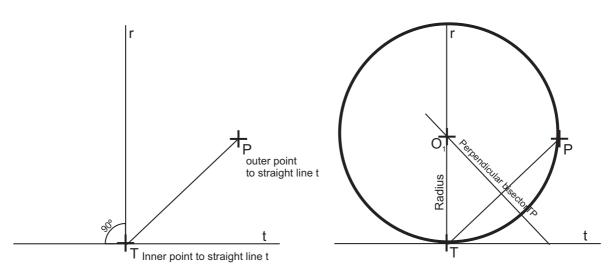
TANGENCIES AND LINKS


3rd Compulsory Secondary Education Teacher: Maria Jose Relaño Cotta

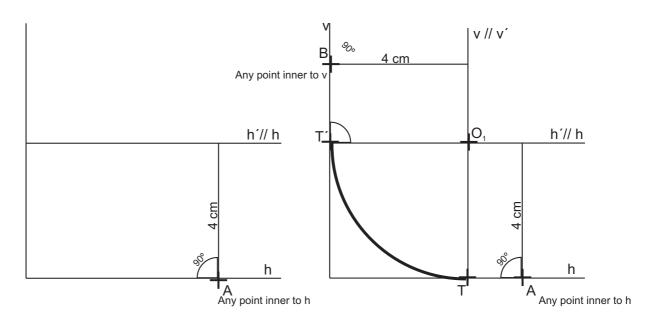
a.1. Draw a pair of outer tangent circumferences, which radius are $r_1 = 2'5$ cm And $r_2 = 2$ cm.


- 1. Trace O_1 ($r_1 = 2'5$ cm); trace a radius r_1
- 2. Name the tangency point T.
- 3. Prolong the 2 centimetre radius to mark the second centre.
- 4. Go over the two circunferences.

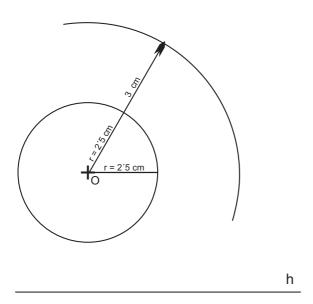
a.2. Draw a pair of inner tangent circumferences, which radius are $r_1 = 2'5$ cm And $r_2 = 2$ cm.

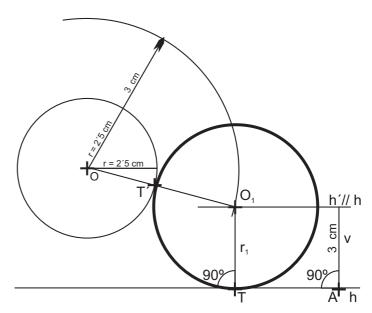

- 1. Trace O_1 ($r_1 = 2.5$ cm); trace a radius r_1
- 2. Name the tangency point T.
- 3. Measure the 2 centimetre radius from point T on radius OT to mark the second centre.
- 4. Go over the two circunferences.

 $\boldsymbol{b}.$ Trace two tangent straight lines (t y $\underline{t}^{\prime})$ to the circumference O_{1}

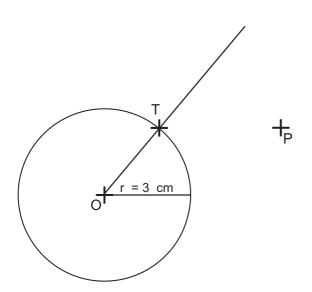

- 1. Trace O_1 ($r_1 = 4$ cm); trace a radius r_1 (anyone).
- 2. Name the point T (tangency poin t).
- 3. By point T, trace the tangent straight line (to radius O₁T). Go over the straight line t.
- 4. Trace a second rad ius r': trace the tangent straight line t' by T' radio O_1T' . Go over t'.

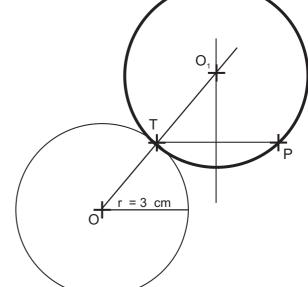
a. Draw the circunference O_1 tangent to the straight line \mathbf{t} by poin \mathbf{t} \mathbf{T} which contains the point \mathbf{P} .


- Draw the straight line t, mark the point T ,anyone which belongs to t, and the point P, anyone outer to line t.
- 2. Trace the straight line \mathbf{r} to line \mathbf{t} by point \mathbf{T} .
- 3. Join points T and P.


- 4. Trace the perpendicular bisector of segment TP ; it cuts the line \boldsymbol{r} by the centre O $^{\mbox{\tiny 1}}$
- 5. Draw the solution circumference, with centre = O_1 and radius = O_1T
- **b.** Draw the tangent arc to two perpendicular straight line, which rad ius is 4 centimetre.

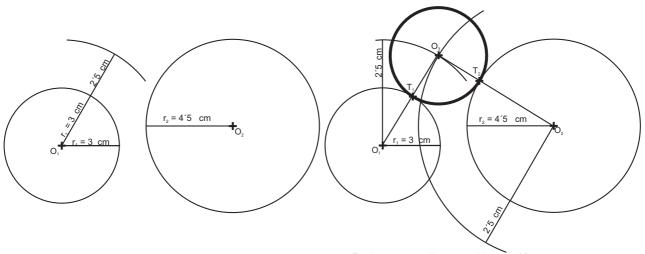
- 1. Trace two straight lines; a horiaontal one H and a vertical one v.
- 2. Trace a parallel one to h at a 4 centimetre distance.
- 3. Trace a parallel one to v at a 4 centimetre distance.
- 4. The intersection point bet ween both parallels is the centre O
- 5. Determine the tangency points.
- 6. Trace the circumference arc TT´, which centre = O_1 and radius = O_1 T .

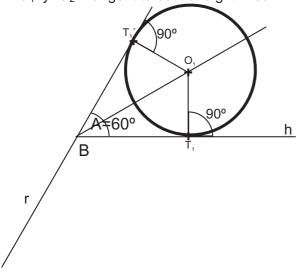

a. Place the circumference O (radius = 2'5 cm) and the horizontal straight line h, Trace the circumference O_1 (radius = 3 cm)



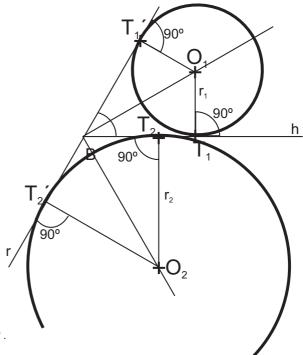
- 1. Draw the circumference O (cto = any point ; radius = 2'5 cm)
- 2. Trace horizontal straight line h.
- 3. Trace the arc (cto = O; radio = 5'5 cm/s)

- 4. Trace parallel straight line to h at a 3 centimetre distance.
- 5. Name O_1 (intersection point between the arc and line h')
- 6. Determine T and T': trace O₁; go over the solution circumference.
- **b.** Place the circumference O (radiius r = 3 cm), point P, outer to the circumference, and point T, inner to the circumference, draw the circumference O₁ t angent to O by T which contains to P.




- 1. Trace the circumference O (radius = 3 cm); T is any inner point of the circumference.
- 2. Mark the point P (anyone outer to the circumference)
- 3. Trace the radius OT; prolong it.

- 4. Trace the perpendicular bisector of the segment TP.
- 5. The perpendicular bisector cuts to radius OT in the centre O.
- 6. Trace the circumference O_1 ; go over it.


a. Place O $_1$ (r_1 = 3 cm) and O $_2$ (r_2 = 4′5 cm); draw O $_3$ (r_3 = 2′5 cm) Tangent to O $_1$ And O $_2$

- 1. Trace O_1 (cto = any point; $r_1 = 3$ cm)
- 1. Trace O_2 (cto = any point; r_1 = 4, 5 cm)
- 3. Prolong the radius r_1 ; add up to 2'5 cm.
- 4. Trace the arc with centre = O_1 radius = r_1 + 2'5 = 5'5 cm.
- 5. Prolong any radius r_2 ; add up to 2'5 cm
- 6. Trace the arc with centre = O $_2$ And radius $_2$ = 4,5+ 2'5 = 7 cm
- 7. The intersection point of the two arcs is O_3 ; hallar T_1 y T_2
- 8. Trace the circumference O₃; go over it.
- **b.** Place two straight lines h and r which cut each other with a 60 degree angle; draw circumferences
- O₁ y O₂ Tangent to both straight lines.

- 1. Trace an horizontal line (h)
- 2. Trace the inclined line r (forming a 60° angle with h)
- 3. Trace the bisector line of the angles A = 60 $^{\circ}$ and B = 120 $^{\circ}$.
- 4. Mark the centre O₁: any point inner to bisector line.
- 5. Determine the tangency points.
- 6. Trace the bisector line of the angle $B = 120^{\circ}$.

- 7. Mark O , any point of the bisector line. Determine T_2 y T_2
- 8. Trace O_2 with centre = O_2 y radius = O_2 T